Description
For localized prostate cancer, radiotherapy (RT) is an accepted option for primary (definitive) treatment. Other options include surgery (radical prostatectomy), hormonal treatment, or active surveillance.
In the postoperative setting, RT to the prostate bed is an accepted procedure for individuals with an increased risk of local recurrence, based on three (3) randomized controlled trials that showed a significant increase in biochemical recurrence-free survival. Professional society guidelines have recommended adjuvant RT to individuals with adverse pathologic findings at the time of prostatectomy and salvage RT for individuals with prostate-specific antigen recurrence or local recurrence after prostatectomy in the absence of metastatic disease.
Radiotherapy Techniques
Radiation therapy may be administered externally (i.e., a beam of radiation is directed into the body) or internally (i.e., a radioactive source is placed inside the body, near a tumor). External radiotherapy (RT) techniques include "conventional" or 2-dimensional (2D) RT, 3-dimensional (3D) conformal RT, and intensity-modulated radiation therapy (IMRT).
Conventional External-Beam Radiotherapy
Methods to plan and deliver RT have evolved that permit more precise targeting of tumors with complex geometries. Conventional 2D treatment planning utilizes X-ray films to guide and position radiation beams. Bony landmarks bones visualized on X-ray are used to locate a tumor and direct the radiation beams. The radiation is typically of uniform intensity.
Three-Dimensional Conformal Radiotherapy
Radiation treatment planning has evolved to use 3D images, usually from computed tomography (CT) scans, to more precisely delineate the boundaries of the tumor and to discriminate tumor tissue from adjacent normal tissue and nearby organs at risk for radiation damage. Three-dimensional conformal RT (3D-CRT) involves initially scanning the individual in the position that will be used for the radiation treatment. The tumor target and surrounding normal organs are then outlined in 3D on the scan. Computer software assists in determining the orientation of radiation beams and the amount of radiation the tumor and normal tissues receive to ensure coverage of the entire tumor in order to minimize radiation exposure for at risk normal tissue and nearby organs. Other imaging techniques and devices such as multi-leaf collimators (MLCs) may be used to "shape" the radiation beams. Methods have also been developed to position the individual and the radiation portal reproducibly for each fraction and to immobilize the individual, thus maintaining consistent beam axes across treatment sessions.
Intensity-Modulated Radiotherapy
IMRT is the more recent development in external radiation. Treatment planning and delivery are more complex, time-consuming, and labor-intensive for IMRT than for 3D-CRT. Similar to 3D-CRT, the tumor and surrounding normal organs are outlined in 3D by a scan and multiple radiation beams are positioned around the individual for radiation delivery. In IMRT, radiation beams are divided into a grid-like pattern, separating a single beam into many smaller "beamlets". Specialized computer software allows for "inverse" treatment planning. The radiation oncologist delineates the target on each slice of a CT scan and specifies the target's prescribed radiation dose, acceptable limits of dose heterogeneity within the target volume, adjacent normal tissue volumes to avoid, and acceptable dose limits within the normal tissues. Based on these parameters and a digitally reconstructed radiographic image of the tumor, surrounding tissues, and organs at risk, computer software optimizes the location, shape, and intensities of the beam ports to achieve the treatment plan's goals.